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space. Similarly, rocking curves calculated with 
dynamical theory show the contribution from each 
of the multiple beams peaked at the 200 node even 
though F2oo is explicitly zero in the calculation. This 
feature of multiple-beam diffraction is also clearly 
shown by the 8 functions present in the perturbation 
treatment of Shen (1986). The existence of sharp 
rocking curves does not require a non-zero structure 
factor, and multiple-beam effects are neither spread 
out in reciprocal space nor suppressed by a zero F200. 

A null F2o o neither contributes to scattering nor 
suppresses the scattering from all of the other nodes 
in reciprocal space, even for nodes far from the Ewald 
sphere. At a randomly selected q~ angle, one should 
expect measurable multiple-beam effects at the 200- 
and 420-type nodes in reciprocal space, even if F200 
and F42o are zero. Also at the 622- and 442-type nodes, 
integrated intensities will, in general, differ from those 
predicted by the small but non-zero F622 and F442 
(Tischler & Batterman, 1984). In both cases, ignoring 
the multiple-beam effects from nodes far from the 
Ewald sphere leads to inaccurate conclusions. 

These results seem to explain the basis-forbidden 
reflection measurements of Post & Ladell (1987) that 
show a clear effect where the 311 and 002 nodes 
intersect the Ewald sphere. Just as many other multi- 
ple reflections were important at the 200 reflection 
examined in this work, the ' three-beam' case of 311 
and 002 measured by Post & Ladell will also include 
many multiple-beam contributions. These extra con- 
tributions come from pairs of allowed reflections 
whose indices sum to 002, and must be included to 
calculate properly the diffracted intensity. 

For the 200 measurements presented here, the nar- 
row rocking-curve widths rule out surface diffraction 

as a possible source of error because surface peaks 
would be much wider. Harmonic contamination of 
the rocking curves can also be ruled out because any 
harmonic diffracting from the 400 reflection would 
remain constant with ~, whereas both the calculated 
and the measured integrated intensities approach zero 
at ~ - - 0  for our experimental conditions. 

VI. Concluding remarks 

We have shown that the 200 structure factor is zero 
within the experimental accuracy, and that all of the 
scattering intensity can be understood by performing 
multiple-beam calculations. Both the theoretical 
calculations and measurements show that easily 
measurable sharp rocking curves are to be expected 
at the 200 reflection and hence explain the observa- 
tions of Post & Ladell (1987). It is important to note 
that the 200 integrated intensities are due to multiple- 
scattering contributions rather than a nonzero F2o0. 
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Abstract 

X-ray determination of strain and damage distribu- 
tions in thin subsurface layers from rocking curves is 
an ambiguous procedure. In the case of N distorted 
layers, all equivalent profiles can be obtained in the 

kinematical limit and their total number may be 
sufficiently large, being of the order of magnitude 2 N 
[Afanas'ev & Fanchenko (1986). Dokl. Akad. Nauk 
SSSR, 287, 1395-1399]. A more detailed theoretical 
treatment of the problem and the analytical 
expressions of all bicrystal-equivalent crystal 
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structures (crystal structures leading to the same 
diffraction intensity as the crystal with constant 
spacing deviation in the subsurface layer) are 
presented. 

I. Introduction 

X-ray diffraction methods have been widely used for 
research into crystal surface damage arising from 
impurity diffusion, ion implantation and other exter- 
nal sources of destruction (Burgeat & Taupin, 1967; 
Burgeat & Colella, 1969; Bonse, Hart & Schwuttke, 
1969; Yogi, Miyamoto & Nishizava, 1970; Awano, 
Speriosu & Wilts, 1984). Recently these methods have 
been applied to the investigation of heterostructures, 
superlattices and epitaxial films (Quillec, Goldstein, 
Le Roux, Burgeat & Primot, 1984; Halliwell, Lyons 
& Hill, 1984). The impurity contamination results in 
lattice-parameter variation and in partial crystal 
amorphization, usually described by the statistical 
Debye-Waller factor. Burgeat & Taupin (1967) based 
their X-ray rocking-curve analysis on the Takagi- 
Taupin equations (Takagi, 1962; Taupin, 1964) to 
account for the spacing dependence on the non- 
homogeneous impurity distribution near the surface 
in the dynamical model. Diffraction from thin layers 
is weak and may be described by the simple kinemati- 
cal model (Afanas'ev, Kovalchuck, Kovev & Kohn, 
1977; Kamenou, Hirai, Asama & Sakai, 1979; 
Speriosu, Glass & Kobayashi, 1979). A kinematical 
treatment of the diffraction problem allows one to 
obtain such integral values as the average distorted 
layer thickness, degree of amorphization and spacing 
variation (Afanas'ev, Kovalchuck, Kovev & Kohn, 
1977), as well as the detailed distorted layer struc- 
tures, the strain and damage distributions being fitted 
directly (Speriosu, Glass & Kobayashi, 1979). 
Recently the ability to investigate distorted crystal 
structure was enhanced by means of triple-crystal 
diffractometry (Eisenberger, Alexandropoulos & 
Platzman, 1972; Afanas'ev, Kovalchuck, Lobanovich, 
Imamov, Aleksandrov & Melkonyan, 1981; 
Afanas'ev, Aleksandrov, Imamov, Lomov & 
Zav'alova, 1984; Afanas'ev, Aleksandrov & Imamov, 
1986). Owing to the diffuse scattering separation pre- 
cise rocking-curve measurements are available at very 
large angular deviations from the Bragg angles in this 
scheme. As a result, high spatial resolution may be 
achieved, and Yakimov, Chaplanov, Afanas'ev, Alek- 
sandrov, Imamov & Lomov (1984) and Afanas'ev, 
Aleksandrov, Fanchenko, Chaplanov & Yakimov 
(1986) have investigated distorted layers consisting 
of several single atomic layers using this method. The 
angular deviation from the Bragg angle was three 
orders of magnitude greater than the rocking-curve 
width in these experiments. Diffraction at such great 
deviation angles has been called asymptotic Bragg 
diffraction (Afanas'ev, Aleksandrov & Imamov, 

1986). The complete theoretical analysis of the 
diffraction data of the problem under consideration 
was carried out by Afanas'ev & Fanchenko (1986) 
who have suggested a new method of reconstruction 
of the equivalent crystal structures leading to the same 
diffraction intensity in the kinematical model. Their 
method was applied to the diffraction analysis of 
ion-implanted layers by Zav'alova, Imamov, Lomov, 
Marguschev & Maslov (1987). 

In § 2 the problem of diffraction from a single 
crystal with a thin subsurface distorted layer will be 
discussed. In § 3 examples will be presented of dual 
distorted profiles leading to the same diffraction 
intensity; in § 4 the general analysis of the equivalent- 
solution-reconstruction problem will be carried out, 
and in § 5 analytical expressions are considered for 
the crystal structures of the diffraction analogues of 
a crystal with constant interplanar spacing deviation 
Ad and Debye-Waller factors e - ~  i.e. a bicrystal. 
The derivation of these expressions is given in the 
Appendix. 

2. Diffraction from a crystal with a thin subsurface 
distorted layer 

The analysis of the diffraction from a single crystal 
with a thin subsurface distorted layer will be given 
in the case of symmetric reflection shown schemati- 
cally in Fig. 1, the thickness of the distorted layer 
being L. The reflection from the thin distorted layer 
is weak and its amplitude MN can be expressed, in 
the case of A0 < 0B, as 

M N ( A O ) = B R N ( A O )  

N 
= B Y'. exp [ i (n  - N -  1)(A0+ 0~)27r cot OB 

n = !  

- W. + i~o.] (1) 

B = ighTr/2 sin 0 sin 0B, 
N + I  

q~,, = - 2  ~r ~ z~dk-lk/ do, 
k = n + l  

01 = go/sin 20B, 

Fig. 1. The symmetric diffraction scheme. The atomic planes are 
represented by the solid lines, the root-mean-square atom devi- 
ations from the atomic planes u,, are represented by the dashed 
regions, the nth interplanar spacing in the distorted layer is 
noted as d,. 
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where 0 is the angle of incidence, 0B is the Bragg 
angle, Adn_~n is the nth interplanar spacing deviation, 
do is the ideal crystal spacing, AO= O-OB is the 
angular deviation from the Bragg angle, N is the 
number of single atomic planes in the distorted layer, 
exp (-Wn) is the nth atomic plane Debye-Waller 
factor, and Xo, Xh are the Fourier components of the 
elementary cell polarizability. The Debye-Waller fac- 
tor may be expressed via the value of the root-mean- 
square atomic displacements from the atomic planes 
un as (shown schematically in Fig. 1) 

exp ( -  W,) = exp (--8"/'/" 2 sin 2 0n u2/A2), 

with A representing the X-ray wavelength. 
The total diffraction amplitude from the distorted 

crystal M(AO) includes the diffraction amplitudes 
from the thin distorted layer and from the undistorted 
crystal as well as the multiple-scattering amplitudes. 
The total diffraction amplitude M(AO) can be 
expressed as an expansion in the small parameter M/v 
(M/v is apparently proportional to the value of the 
ratio L/Lext where Lext is the extinction depth). These 
expansion coefficients are given via the value of the 
ideal crystal diffraction amplitude Mo(AO) defined as 

Mo(AO) = y _ ( y 2 _  1)~/: sign y, 

y = -(2AO cos 0B sin O+Xo)/Xh. 

Within the framework of second-order perturbation 
theory for the intensity, one should take into account 
the second-order terms in the small parameter M/v 
in the total-amplitude expansion. The absorption and 
the imaginary parts of Xo, Xh will be neglected in the 
following analysis for simplicity. One can thus obtain 
the following expression for the total diffraction 
amplitude M: 

M(AO) = Mo( AO)[1--lM/v(zaO)[:] 
+ M/V(AO)- Mg(AO)M*(AO) 

+ M3(AO)M*2(AO). 

This expansion is similar to the corresponding 
expansion used by Afanas'ev, Kovalchuck, Kovev & 
Kohn (1977) and is illustrated schematically in Fig. 2. 
The trivial algebraic transformations and the apparent 
identities 

l+Mg=2yMo, 1-M2=2Mo(y2-1)l /2signy 

allow one to express the second-order-perturbation- 

Fig. 2. The multiple-reflecting processes from a crystal with a thin 
distorted layer; the ideal-crystal region is dashed. 

theory diffraction intensity I(AO) in the form 

I(AO)=IM(AO)I 2 

1 [y[--< 1 

= IMo(AO)12ll+2signy(y2-1)l/2MN(AO) (2) 

2(y 2 -  1)'/2M~(AO)12 
- ly l+(y21)l /2  lYl > 1. 

One should emphasize that the total reflection 
region, lYI-< 1 or IA01 ~ 0o, with 0o representing the 
Darwin table width, is insensitive to the thin distorted 
layer at least in second-order perturbation theory in 
the small parameter M/v. Within the linear approxi- 
mation in M/v one arrives at the following expression 
for the intensity: 

t l lYl <- 1 
I(AO)= Io(AO)[l+4sign y(y2-1)l/2 (2*) 

[ x Re MN(AO)] lYI> 1, 

where Io(AO) is the ideal crystal diffraction intensity. 
Since the diffraction intensity from the undistorted 
crystal is great in the small-angular-deviation region, 
the second-order corrections in M/v are practically 
indistinguishable as the background is present; hence 
one can use (2*) for the intensity in the region of 
small angular deviations AO --. Oo and reconstruct only 
Re M/v(0) from the diffraction data. 

For large deviation angles [AO[ >> 0o, lyl >> 1, the 
difference between y a n d  (y2_ 1)1/2 is negligible and 
expression (2) for the diffraction intensity is 
equivalent to the corresponding kinematical 
expression. The total kinematical diffraction ampli- 
tude M is expressed as the sum of the diffraction 
amplitudes M0 and M/v, 

M =  Mo + M/v, 

where M/v is given by (1), the refraction angular shift 
01 being neglected, and Mo(AO) is represented as 

Mo(AO)= B/(1-eiq),  q=27rcot OBAO. 

The kinematical diffraction intensity is given by 

I(AO)=IMI 2= Io(AO)II+(1-e'q)RN(AO)I 2. (3) 

As in the analysis above the term linear in R/v in (3) 
is proportional to Re M/V(AO) for small AO~O. Con- 
sequently, the region of small AO, where one should 
use the exact formula (2"), gives practically no new 
information compared with the kinematical angular 
region considered in (3). This fact allows one to 
consider only the asymptotic Bragg diffraction region 
AO >> 0o. Another angular restriction, AO,~ OB, used 
earlier lets one neglect the Debye-Waller-factor and 
phase-shift dependences on the relatively small devi- 
ation angle AO. 



28 THE X-RAY ANALYSIS OF THIN SUBSURFACE LAYERS 

The asymptotic Bragg diffraction angular region 

00 "~ ,4 0 .¢ 0n 

justifies itself from the theoretical point of view as 
well as from the experimental one. In practice the 
diffraction intensity for ,40-0B is too small to 
measure and for ,40 - 0o the diffraction intensity from 
the undistorted crystal region is too great to distin- 
guish the thin-distorted-layer weak contribution to 
the total diffraction intensity. 

The kinematical model is therefore adequate for 
the description of diffraction from thin distorted 
layers, but the reconstruction of the crystal layer 
scattering characteristics from rocking curves is an 
ambiguous problem, only the diffraction intensity 
being measured and the all phase information being 
lost. This ambiguity is a rather general and well known 
one, but only recently the ambiguity problem and the 
problem of reconstructing all equivalent solutions 
have been solved by Afanas'ev & Fanchenko (1986). 

3. Dual distorted profiles 

Examples of ambiguous solutions were considered 
for the first time by Afanas'ev, Aleksandrov, 
Fanchenko, Chaplanov & Yakimov (1986), who 
showed that, in the case of crystals without surface 
relaxation, the two sets of atomic plane Debye-Wailer 
factors e -w- and e-w,,, related by 

e - ~ = l - e  -w~-"+', (5) 

produced the same rocking curves. 
For the analysis of similar examples, it is con- 

venient to define the new variables c., 

cl = exp ( -  W~ + iq~), 

ON+, = 1 --exp (-- BIN + iq~N), (6) 

C. = exp ( -  W. +ir¢.) - e x p  ( -  W._, + iq~._~) 

satisfying the apparent identity 

N+I 
Z c . = l .  

n=l 

n = 2 , . . . , N ,  

It is also convenient to define the relative intensity 
I(AO) = 1(,40)/lo(,40) expressed in terms of the new 
variables as 

N+I ] 
I (A0)=  Y. c. exp(iqn) 

n=l 

As is seen from (8), if a set of numbers c. is the 
solution of the problem under consideration, the set 

5. * = CN-.+2 (9) 

is also a solution and gives the same diffraction 
intensity. This transformation applied to the scatter- 

ing characteristics gives 

(4) exp ( -  }~'. + iff.) = 1 - e x p  ( -  WN_n+ 1 - -  i~ON_.+~), 

(9*) 
this relation being a generalization of (5). 

It is natural to name the solutions {exp ( - W .  + 
hp.)}, {exp ( - I ~ ' . +  iff.)} related as in (9*) the dual 
solutions. The initial solution { e x p ( - W . + @ . ) }  
should satisfy the condition 

exp ( -  W.) <- 1. (10) 

In general, the dual solution {exp (-I~ ' .  + i~,,)} with 
new exp ( -  W.) values may violate the condition 

exp ( -  }}',) <- 1. (10") 

If (10") is violated for some n, the dual solution 
should be eliminated as a non-physical one. The 
different results are accessible in the different cases. 
For the dual solution {exp ( -  W. + i~.)} to be physical 
the initial solution should satisfy the inequality 

exp ( -  W. ) <_ 2 cos q~., 

which is always satisfied in the case of weak subsur- 
face relaxation. The solution transformation (9) is 
easily generalized on the continuous model with func- 
tions exp [ -  W ( X ) +  @(X)] depending on the distor- 
ted layer depth X: 

e x p [ - W ( X ) + i ~ ( X ) ]  

= l - e x p [ - W ( L - X ) - i ~ p ( L - X ) ] ,  (11) 

where L is the total distorted layer depth. 
In the continuous crystal model it is natural to treat 

only the functions exp ( -  W+ @) satisfying the boun- 
dary conditions 

exp [ -  W(0)] = 0, exp [ -  W(L)] = 1, 
(12) 

~p(L) = 0. 

The function class considered above is invariant 
under dual transformation (9), i.e. the dual solution 
satisfies the boundary conditions (12) if the initial 
solution satisfies them. The transformation (11) may 
be rewritten in a more symmetrical form: 

(7) exp [ -  W(X)]  

=sin ~ ( L - X ) / s i n [ ~ ( L - X ) + q ~ ( X ) ]  

exp [ - W ( X ) ]  

= s i n q ~ ( L - X ) / s i n [ ~ o ( L - X ) + ~ ( X ) ] .  (13) 

As is apparent from the new dual-solution representa- 
(8) tion (13), the corresponding Debye-Waller factors 

are equal for q~(X) - ~(X) ,  the solution being a self- 
dual one, i.e. invariant under the dual transformation. 
Physical self-dual solutions are obtained from (13) 
with the function q~(X) - ~ (X)  satisfying the condi- 
tions 

0_< q~(X) <_ "rr/2 

O~ ~o(X) + ~ ( L -  X) < - rr/2. 
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The dual-solution different examples are illustrated 
in Figs. 3 and 4. The phase and Debye-Waller curves 
I, I represent solutions with different monotonicity 
properties. Curves II, I"I represent the dual solutions 
with equivalent monotonicity properties, the 
monotonic growth condition being insufficient for the 
unambiguity. Curve III represents a solution with an 
unphysical dual partner, curve IV represents a self- 
dual solution. 

4. Genera l  ana lys i s  

As is clear from (8) for the relative intensity, I(AO) =- 1 
for an idealcrystal. I(AO) differs in practice from 1 
for some AO, the number of essentially distorted sub- 
surface atomic planes N being given by 

N ~ tan  OB/4AO. 
Let us now consider a quantitive analysis which gives 
the possibility of the reconstruction of the coefficients 
c, and of the corresponding exp ( -  W, + i~,) from 
the experimentally obtained relative intensity func- 
tion I(AO). In fact, we consider the reconstruction 
of all diffraction amplitudes leading to the same 
intensity. The real part of the amplitude may be 
reconstructed for q --> 0 directly from (2*) and (3), but 
this information is insufficient for reconstruction of 
all the exp ( -  W~ + @,). 

' e  - e *  
1 1 

x x 
0 ~ to  i "~ 

Fig. 3. Debye=Waller factors of  the dual distorted profiles. Curves 
I, I and II, II represent the solutions interconnected by the dual 
transformation. Curve III represents the profile with an unphy- 
sical dual partner. Curve IV represents a self-dual profile. 

1"5 

-1 "5 

IV 1 "5 

fl 

~ o  ~k 
- 

Ill 

-1 "5 

Fig. 4. Phases of  the dual distorted profiles. Curve notations are 
the same as those in Fig. 3. 

To solve the ambiguity problem one should con- 
sider (8) and assume that some distorted profile with 
phases ~o °, Debye-Waller factors exp ( -  I4/°,) and cor- 
responding coefficients c °, given by (6), is known. 
Introducing the notation z = e iq and the polynomial 

N + I  

PN(c, z )=  Z c,,z"-', (14) 
n = l  

we may express the relative intensity I(AO) as 

I( AO) = ( 1/zN)PN( c °, z)PN( ~o, z), 

where ?0 is related to c ° in dual transformation (9). 
Our aim is to obtain all the sets of coefficients c,, 
leading to the same l(aO) and consequently to the 
same polynomial, 

F2N(c°,z)= PN(c,z)PN(?,z). (15) 

If z, represents the roots of the polynomial PN (c °, z), 
then 1/z* will be the roots of the polynomial 
PN(~ °, z), all these roots being simultaneously the 
roots of the polynomial F2N(C °, z). One may pick out 
in a new way the N roots of the new polynomial 
PN(c, z) from the given 2 N  roots of the polynomial 
F2N(c °, z), the remaining roots being the roots of the 
new polynomial PN(c, z). One may take z, or 1/z* 
as the nth root of the polynomial PN(c, z); hence the 
total number of possible sets of roots of the poly- 
nomial PN(c, z) and of the corresponding sets c, is 
2 N, the coefficients of the polynomial PN(c, z) being 
unambiguously related to its roots. With the normaliz- 
ation condition (7) one may express coefficients Cn 
via the roots t l , . . . ,  tN of PN(¢, z) in the following 
way: 

N 

CN+I = H 1 / ( 1 - t . )  
n = l  

N 

CN+I-,,=(--1)"CN+I Z t,,. 
l ~ i l < . . . < i  n m = l  

(16) 

n = l , . . . , N .  

Substituting all roots z,, of PN(c °, z) by 1/z*, we 
reproduce the dual transformation (9) discussed 
above. In general there exist 2 N different solutions 
c,, leading to the same diffraction intensity. One 
should pick out only the physical solutions which 
satisfy the condition (10). Their number may be large 
or small in different cases. 

Re MN(0) is invariant under the root transforma- 
tion z,, ~ 1/z* discussed above. One should note that 
this transformation produces no new solution for 
[z,] = 1, hence the number of different solutions is 
essentially decreased when the absolute value of some 
roots is equal to unity. The degenerate cases are 
accessible as the absolute values of all roots are equal 
to unity and the reconstruction problem is then unam- 
biguous. 
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Let us consider an example of the complete self- 
conjugated solution with the distorted profile 

- W  e " = n / ( N + l )  n - - 1 , . . . , N  
(17) 

~o, = 0. 

The corresponding polynomial roots are given by the 
expression 

z , = e x p [ i 2 r r n / ( N + l ) ]  n = l , . . . , N .  

The transformations discussed above do not change 
the original profile (17), but small distortions of this 
profile lead to destruction of the degeneracy and to 
the ambiguity. 

The above analysis is naturally simplified in the 
case of the large layer number N >> 1. One should 
divide the distorted layer into sublayers consisting of 
k monolayers and consider e - w  and Ad to be con- 
stant for each sublayer. If the inequalities 

kzlO<tan OB and kAd <do 

and the condition (4) are satisfied, the sublayer 
diffraction amplitude is equivalent to the monolayer 
diffraction amplitude MN, equation (1), with the 
value A0 substituted by k AO. The monolayer-scat- 
tering-characteristics reconstruction analysis is there- 
fore valid for the sublayer analysis as well. The spatial 
resolution in the sublayer case is k times decreased 
compared with the monolayer one because the 
diffraction data are considered only for the region of 
deviation angle A0 being k times less than the 
monolayer one. As a rather large number of different 
sets exp ( - W ,  + i~,) leading to the same diffraction 
intensity exists, it is convenient to vary the roots S, 
of the corresponding multinomial PN (e, z) instead of 
the parameters exp ( - W , ) ,  q~, in the experimental 
rocking-curve analysis, the total number of param- 
eters being invariant. The relative intensity is the 
following function of the complex parameters S," 

N 
i ( A 0 ) =  [I [ (e 'q-s,,) / (1-S,+) l  2. 

n = l  

This expression is invariant under the transforma- 
tions S,, + 1/S* in agreement with the previous analy- 
sis, hence these parameters S, may be reconstructed 
from the known function I(AO) in the polycircle 
S, -< 1, this problem being unambiguously solved by 

variational methods. After reconstruction of the N 
roots in the polycircle I&l-< 1, one should check all 
2 N sets of roots of polynomial PN(C, Z) that contain 
S, or I / S *  as the nth root, and reconstruct from (16) 
the corresponding c, and all the sets with physical 
scattering characteristics of the distorted layer. 
Examples of experimental data analysis based on the 
above method have been considered recently by 
Zav'alova, Imamov, Lomov, Marguschev & Maslov 
(1987). 

5. Bicrystal diffraction analogues 

In order to demonstrate the abilities of the method 
under consideration it is convenient to consider the 
simplest distorted profile with e-w and Ad constant 
and to find its equivalents analytically. The poly- 
nomial PN(e °, z) is represented in this case as 

PN(C °, Z, e w) 

=[(1 - z )  e -''~N + z N ( e  - w -  1) 
(18) 

+ zN+'(1-e-W+i '~)] / (z  -e-"~ ), 

a = 2rrAd/do. 

Considering firstly the case without partial amor- 
phization, i.e. with e - w =  1, one can reduce (18) as 
follows: 

e - i c ' N  + z N + I ( 1  - -  e +~) - z e - i a N  

PN(C°,Z) - 
( z - e  -i~) 

It is easy to show that all the roots of the equation 
PN (C °, Zk) = 0 satisfy the condition 

(sin 141/2) '/N < 1/Izkl < ½+ (~+ 2 sin 141/2) '/2 

The last expression shows that all the root magnitudes 
tend to unity for large N and small 4; hence the 
perturbation theory in the small parameter 1 -  [zk[ is 
available. Introducing the notation zk = 
rk exp (itPk sign a),  one can obtain the following 
equations for Ok, rk (1--rk <sin Ok/2): 

~bk = 2rr(2k - 1) / (2N + 1 ) -  lal 

+ 2 ( 1 - - r k ) / l a l ( 2 N +  l)rt~+'/2+~'( l:~l) ,  (19) 

~bk E [0, 2rr), r~+' /2s in la l /2=sin~bk/2 ,  

with 4 of order of magnitude 1 / N  and all values of 
order 1 /N  2 being neglected. 

If the root numbers k satisfy the inequality 

12~r(2k- 1) /2N + 1-14ll<~ 1 /N  

then equations (19) reduce to the following equations 
for pk = ( N + ½)( rk --1)" 

]a I e 2p~ + [ ] a l - 2 r r ( 2 k - 1 ) / ( 2 N  + 1)] e p~ 

+pk/14l(N+½)2=O 

with the signs + corresponding to the signs in (19). 
If the root numbers k satisfy the inequality 

2 7 r ( 2 k - 1 ) / ( 2 N + l ) - 1 4 1  >~l /N  (20) 

then (19) may easily be simplified and the following 
solution is obtained for ~k, rk" 

~0k = 2 r r (2k -  1) / (2N + 1 ) - ] a  I 

+ 2rcO[la I - 2 ~-(2k- 1 ) / (2N + 1 )], 

(10 x > °  0(x)= x_<0 

rk = [sin (~bk/2)/sin (l~l/2)] '/(N÷'/~) (21) 
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Assuming inequality (20) to be satisfied for all N 
roots in the following analysis, one may use 
expressions (21) for all roots. As is shown in the 
Appendix, the Debye-Waller factors may be directly 
expressed via the corresponding roots of the poly- 
nomial PN(c, z). Considering the root set, differing 
from the initial one in p root transpositions zn ~ 1/z*, 
one may express the corresponding Debye-Waller 
factors in the following way within the above approxi- 
mation: 

P 1--rk 
exp (-- W, )=  1 + 2 

sin [Tr(2k- 1) / (2N T 
+ 1)] 

7r(2k-  1 ) (2n-  1) 
x sin , (22) 

2 N + l  

with the sum being taken over all p transpositions. 
For the analysis of (22) one should consider the 
dependence of rk on o~. It is apparent from (21) that 
all rk>l  in the case of l a [ < 7 r / ( 2 N + l ) .  It can be 
shown exactly, and is also seen from (21), that r~ = 1 
for a = T r / ( 2 N + l ) .  One may also easily show that 
the first k root magnitudes are less than unity 
for I~1~ [7r(2k- 1) / (2N + 1), 7r(2k + 1) / (2N + 1)). 
Hence, by increasing a one tends to decrease rk and, 
correspondingly, the physical-solution number. 

Indeed, it can be seen from (22) that the Debye- 
Waller-factor corrections increase as the rk decrease. 

In order to show that the bicrystal has no physical 
analogues for q~ = Nc~ > ~ / ( 2 + l / N ) ,  let us firstly 
consider the case of one root transposition. As is seen 
from (22), the transposition of the first root, with 
absolute value rl being less than unity for ~o> 
7rN/(2 N + 1 ), gives exp ( -  W! ) > 1. Although the sign 
of 1 - rk is arbitrary in the case of the kth root transpo- 
sition, one can always find two distorted-atomic-plane 
numbers, m~, m2, that satisfy the inequalities 

sin 
7r(2k-  1)(2m~ - 1) > 0, 

2 N + l  

7r(2k-  1)(2m2-1) 
sin < 0, 

2 N + l  

and result in the Debye-Waller factor exp ( -  Win,) or 
exp (-Win2) being greater than unity in this case. 

The situation is analogous in the case of the trans- 
positions of the two roots. Indeed, the previous analy- 
sis is valid for transpositions of the first and kth roots, 
and in the case of transposition of k~th and k2th roots, 
k~, k2¢ 1, one can always find two numbers ml, m2, 
that satisfying the inequalities 

~-(2kl-  1 ) (2m, -  1) 
sin > 0 

2 N + 1  

7r(2k2-1)(2m~- 1) 
sin ~ 0 

2 N + l  

7r(2kl - 1)(2m2- 1) 
sin < 0 

2 N + l  

7r(2k2-1)(2m2-1)  
sin < 0. 

2 N + 1  

These inequalities result in an unphysical mlth or 
m2th Debye-Waller factor. It is natural to assume 
that this situation will be the same for the larger 
number of root transpositions with expression (22) 
containing a sum of a large number of terms with 
large phases and the transposition-sum sign being 
distinct for different n. Hence, one can conclude that 
the bicrystal has no physical analogues in the case of 
sufficiently large phases. This approximate analytical 
analysis has been justified by the exact numerical 
calculations carried out for N <- 12, and the absence 
of the bicrystal physical analogues has been 
confirmed in the case of 1~I>TrN/ (2N+I )  (the 
numerical calculations for sufficiently larger N are 
time consuming). 

However, the situation is essentially different in the 
case of the bicrystal with e -W< 1. Instead of (22), 
one can easily obtain the following expression for the 
Debye-Waller factors reconstructed from the root 
sets with the p root transpositions executed: 

exp (_ W,) = exp (_ W) {1 +2~& [ a--rk 
k sin (a +'-~k)/2 

x s m - - - ~  ( 2 n -  1) , (23) 

ik = ~k exp (i~k), 

where ffk are the polynomial roots of (18). The deriva- 
tion of (23) is given in the Appendix. 

The difference between Zk and ffk may be neglected 
in the case of 1 - e - W . ~ l ;  hence, one can use (21) 
for the roots within the above approximation. The 
magnitudes of the roots with numbers satisfying the 
inequality 

k -< [I a 1(2N + 1)/2 7r] + 1 

are less than unity, and the value of e -w' obtained 
by the p transpositions of these roots may be evalu- 
ated as 

e -w' = e-W(1 + 2plal). 

Hence, these transpositions result only in the unphy- 
sical solutions in the case of [a[ > (1 -e-W)~2.  Let us 
consider the contribution to the Debye-Waller factor 
value e - w  of the other root transpositions with root 
magnitudes greater than unity. 

As is easily seen from (21), all the root magnitudes 
tend to unity with the growth of[a],  thus decreasing 
the corrections to the initial Debye-Waller factors. 
With the sum of a large number of sines with large 
phases being of the order of unity and not of the 
order of the term number it is easy to show that if 
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the rather weak condition 

e - w  <~ 1 - ( 1 / N )  In (2N/Iwl) (24) 

is satisfied, the transpositions of the roots with magni- 
tudes greater than unity lead to some new physical 
solutions. Hence, the number of the bicrystal physical 
equivalents NF may be evaluated as 

NF --~2 ~N-1/z-I¢I/'~) (25) 

The greater the phases I q, I the better is inequality 
(24) satisfied. Hence, as is seen from (25), the ten- 
dency of the physical solution number to decrease is 
rather weak and the problem under consideration 
may become an unambiguous one only in the case 
of Ad -- do. Thus, there exists a rather large number 
of bicrystal physical analogues even for relatively 
small Debye-Waller-factor deviations from 1. 

In the case of N = 1 0 ,  ~o=rr, e -W=0.8 ,  exact 
numerical calculations were carried out and 375 
bicrystal physical analogues were discovered. Our 
previous qualitative analysis predicts --500 bicrystal 
analogues, in rather good agreement with the numeri- 
cal calculations. 

One should note that the partial crystal amorphiz- 
ation is always present in the cases of the ion 
implantation; hence, the many-solution interpreta- 
tion of the rocking curves is necessary at least in this 
problem. The large number of physical analogues of 
the bicrystal with e - W <  1 demonstrates the com- 
plexity of the reconstruction of the distorted profiles 
from the diffraction intensity data for the relatively 
large distorted layer number. The numerical calcula- 
tion analysis shows that one can hardly analyse the 
above problem for Nmax ~> 20 with reasonable com- 
puter time; besides, the large number of rather similar 
solutions of our problem makes the usual direct vari- 
ational fit of the parameters e -w  and Ad fruitless. 
Hence, it is not possible to arrive at a much better 
spatial resolution than 

L m i  n = (tan OB)do/4AOma x N . . . .  

where A0max is the maximum angular deviation from 
the Bragg angle in the experiment. 

For an unambiguous profile reconstruction some 
additional information is needed. One can use the 
scattering-phase data obtained from the secondary- 
processes data, and mainly from the electron photo- 
emission data (Afanas'ev, Aleksandrov & Imamov, 
1986). This additional information may sufficiently 
decrease the number of possible solutions of the 
reconstruction problem. The above problem of the 
reconstruction of all the equivalent diffraction-ampli- 
tude Fourier-component sets is a rather general one 
and is similar to the phase problem in optics and to 
the problems of low-energy electron diffraction 
(LEED). Hence, the above methods may be useful 
for these problems as well. 

APPENDIX 
It is convenient to use Cauchy's theorem for recon- 
struction of the phase and Debye-Waller factors from 
the roots of the polynomial PN(c, z): 

exp ( -  W,, + i~o,,) 

= (1/27ri1 ~r [PN(c, z l - z N ] d z / z m ( 1 - z )  
o 

m = l , . . . , N  (26) 

where ro is a closed contour in the vicinity of the 
origin. The integrands in (26) may be multiplied by 
an arbitrary analytical function f ( z )  with the follow- 
ing asymptotic behaviour at z ~ 0: 

f ( z )  = 1 + O(zN).  

Choosing the following expression for f ( z ) ,  

f ( z ) =  1/(1--zN) .  

and taking into consideration the fact that the 
integrands deductions at infinity 

res [PN( c, z ) -  z N ] f ( z ) / z "  (1 - z) 

are equal to zero, one can express the integral via the 
sum of the deductions in the f ( z )  poles and obtain 
the following expression for exp ( -W, .  + i~m) that 
can easily be found by the inverse discrete Fourier 
transformation and is useful in the case of small roots 
t k • 
exp ( -  W., + i~o,.) 

1 ~ t,, 
N t,, - 1 

n = l  

+ ~  - 1  
N ,,=l t=l 1 - h 

exp [-i2~rn(m - 1 ) / N ] /  
x 1 ; e-~p i/-~n/--N-) ' J" (27) 

The simple sum rule is obtained from (27): 
N N 

exp( -W, ,+ iq~ , . )=  ~ t , , / ( t , , -1 ) .  
m = l  m = l  

However, it is convenient to choose the following 
function f ( z )  in the bicrystal case: 

f ( z )  = (1 - z ) / ( z -  e-'~)PN(c °, z, e- w), 

where PN(c °, z, e -w)  is given by (18). 
Multiplying the integrand in (26) by f ( z ) ,  one can 

reduce (26) to 

exp ( -  W,, + i~p,,) 

1 ~r dz~-i1 Z--tk 
-27ri ,, z ----~ = (1--tk~(Z--~k) 

exp ( -  iaN)  
x (28) 

[ z - e x p  ( - i a ) ] [  1 - e x p  ( -  W + ia)]'  
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where the root set t, differs from the polynomial (18) 
root set ~,, in the p root transpositions :~k -~ 1/~k* = tk. 
By deforming the integration contour in (28) one may 
express all the exp ( -  W,, + i~m) as the sums of ( p + 1 ) 
deductions in the integrand poles, the deduction at 
infinity being equal to zero, and obtain the result 

exp ( -  W m -~- i~m ) 

= exp [ -  W +  i a ( m  - N -  1)] 

P × I-[ (1 --.Zk) [___~1 -- z__.k*, ex___pp ( -  ia)_] 
k ( 1 - - f f * k ) [ e x p ( - - i a ) - - Z k ]  

× [1 _~-e~ exp ( - irna ) 

k 

I¢~1:-1 
£~ Z* exp ( - i a ) -  1 

" 1 x]--[ e x p ( - i a ) - Z ~  Zk.-I_/_._Z* 
t~kexp( - - ia ) - - l /~ /*  Z?k---~t J '  

where all the sums and products are taken over all 
the transpositions executed. 

As all the bicrystal root magnitudes [Zkl tend to 1, 
the following expression for Debye-Waller factors 
may be obtained to first order in 1--I~kl: 

exp (- W~)=exp (- W){ l + 2 Re ~, [ exp (-ima) 

]} 
Zk* exp ( - i a ) -  I " 
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Abstract 

The statistical properties of a difference density Ap 
are not fully characterized by the standard deviation 
cr(Ap), which relates to the density at a point. That 
is not sufficient information to assess the significance 
accurately for the density within a finite volume. The 
reliability of  a complete Ap map may be determined 

0108-7673/88/010033-05 $03.00 

by applying standard statistical tests to the chi-square 
index 

x 2:  E ~-2(s)[ AF(s)]2 
$ 

from a least-squares refinement, where AF is a struc- 
ture-factor residual and o "2 is the variance in the 
structure factor, or equivalently to the goodness-of-fit 
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